BODMAS – সরল অংকের যে নিয়মটা প্রায়ই ভুলভাবে শেখানো হয় আমাদের

BODMAS –সরল অংকের যে নিয়মটা প্রায়ই ভুলভাবে শেখানো হয় আমাদের
-------------------------------------------------------

পাটীগণিত বা বীজগণিতের সরল অঙ্কে যোগ-বিয়োগ-গুণ-ভাগ এমন অপারেশনগুলো কোনটার পরে কোনটা করতে হবে (Order of Operation), সেটা প্রায়ই আমাদেরকে শেখানো হয় একটা ছোট্ট স্মরণসূত্র (mnemonic) দিয়ে: BODMAS। সাধারণত এটা শেখানো হয় এভাবে: 
B=Bracket, 
O=Of, D=Division, 
M=Multiply, 
A=Addition, 
S=Subtraction। 
এবং শেখানো হয় আগে ব্রাকেটের কাজ , তারপর ‘Of’,  তারপর Division, তারপর Multiplication, এরপর Addition এরপর Subtraction। এখানে বেশকিছু সমস্যা আছে। এক এক করে সমসাগুলো বলি।
BODMAS
BODMAS 

-------------------------------------------------------------------
কথা ১: জেনে রাখুন আগে 'ভাগ', পরে 'গুণ' এমন কোনো নিয়ম আসলে নাই
-------------------------------------------------------------------

এটা অনেকেরই বিশ্বাস করতে কষ্ট হবে আমি জানি। সারা জীবনের শিক্ষা কি তবে ভুল হয়ে গেল? হ্যাঁ। BODMAS এর ভেতরে আগে D আছে, তাই Division বা ভাগের কাজ আগে হবে, এটাই সবাইকে শেখানো হয়, যেটা অপ্রয়োজনীয়। আসলে গুণ ও ভাগের অগ্রাধিকার একই। যোগ-বিয়োগের অগ্রাধিকারও একই। তবে গুণ-ভাগের অগ্রাধিকার যোগ-বিয়োগের থেকে বেশি।

অগ্রাধিকারের ক্রমটা এই রকম:
1) বন্ধনী বা Bracket(B)
2) সূচক বা Order (O) [এটাকে Of শেখানো হয়, সেটা নিয়ে শেষে লিখেছি]
৩) গুণ-ভাগ, Division/Multiplication (D/M)
৪) যোগ-বিয়োগ, (Addition/Subtraction)

দেখুন, ৩ আর ৪ এ কায়দা করে আমি দুটো দুটো করে একসাথে লিখেছি। এই ব্যাপারটা আমিও জানতাম না অনেকদিন। এটা নিয়ে খটকা লাগল যখন দেখলাম আমেরিকাতে BODMAS এর মতো আরও একটা মনে রাখার কৌশল আছে: PEMDAS [Parenthesis, Exponent, Multiplication, Division, Addition, Subtraction ]। PEMDAS এর ভিতরে গুণ (M) আছে ভাগের (D) আগে। তাহলে তো দুই রকম নিয়ম হয়ে গেল। পরে যখন জানলাম গুণ আর ভাগের অগ্রাধিকার একই, তখন বুঝলাম দুটো নিয়ম আসলে একই কথা বলে।

তাহলে যদি এমন একটা অঙ্ক থাকে  2×8÷2÷2 কীভাবে করব? যারা জানেন যে ভাগ আগে করতে হয়, তারা এবারে একটু দ্বিধাগ্রস্ত হয়ে যাবেন কেননা এখানে দুইটা ভাগের অপারেশন আছে। আগে 8÷2 হিসেব করতে হবে, নাকি আগে 2÷2? করে দেখুন, দুইবার দুইরকম ফল পাবেন। তবে মূল নিয়মটা জানলে চিন্তার কিছু নেই। মূল নিয়মটা দুটো-

-------------------------------------------------------------------
১. যে অপারেশনের অগ্রাধিকার বেশি, তাকে আগে হিসেব করতে হবে।
২. যদি একই অগ্রাধিকারের অনেকগুলো অপারেশন থাকে তাহলে ‘বাম থেকে ডানে’ হিসেব করতে হবে
-------------------------------------------------------------------

যেমন এখানে আছে শুধু গুণ আর ভাগ, যাদের অগ্রাধিকার একই। ২ নম্বর নিয়মটা এখানে খাটবে। তাহলে বাম থেকে ডানে হিসেব করে যেতে হবে।
2×8÷2÷2
= 16÷2÷2
= 8÷2
= 4

এটা জানলে কোন ভাগটা আগে করব, তা নিয়ে সন্দেহ থাকবে না। এমনকি এখানে ভাগের আগে গুণ করা হয়েছে সেটাও খেয়াল রাখতে পারেন। আর উত্তর বিশ্বাস না হলে পৃথিবীর যেকোনো ক্যালকুলেটরে পরীক্ষা করে দেখতে পারেন।

আরেকটু চিন্তাশীল মানুষদের জন্য বলতে পারি, গুণ-ভাগের অগ্রাধিকার আলাদা হবার যে কারণ নেই সেটা আপনারা অনুভব করতে পারবেন ভাগ কী সেটা বুঝলে। আদতে field theory তে ভাগ বলে কিছু নাই, ভাগকে ভাবা যায় বিপরীতকের গুণ হিসাবে। 8÷2=8×½ । যত জায়গায় ÷2 আছে, সব জায়গায় ×½ বসিয়ে ভাবতে পারেন। আর সব যদি গুণ হয়ে যায়, তখন তো আর আগে-পরের ব্যাপার থাকবে না।

-------------------------------------------------------------------
কথা ২: যোগ আগে, বিয়োগ পরে এমন কোনো কথা নাই
-------------------------------------------------------------------

গুণভাগের কথাটা যোগ আর বিয়োগের জন্যেও সত্যি। একটা অঙ্কের কথা ভাবুন।
13-5+3-2+2
এমন অঙ্ক দেখলে আমি ছোটবেলায় প্রায়ই দ্বিধান্বিত হয়ে যেতাম। যেহেতু আমি জানতাম যোগ আগে, তাই মাঝে 5 আর 3 কিংবা শেষের 2 আর 2 আগে যোগ করে ফেলতাম। পরে অবশ্য স্যারেরা শিখিয়েছিলেন আগে যোগগুলো একসাথে করে নিতে
13-5+3-2+2
= 13+3+2-5-2
= 18-7
= 11

এটাতে ঠিক উত্তর পাওয়া যায়, সন্দেহ নেই। কিন্তু কম্পিউটার যখন হিসেব করে সে কিন্তু এমন সাজিয়ে নেয় না। কারণ পদ্ধতিটা আরও সহজ। যেহেতু যোগ-বিয়োগের অগ্রাধিকার একই, আপনি স্রেফ বাম থেকে ডানে হিসেব করে যান।
13-5+3-2+2
= 8+3-2+2
= 11-2+2
= 9+2
= 11

লক্ষ করুন, এখানে শুরুতেই আমি বিয়োগ করে ফেলেছি, তাতে উত্তর ভুল কিছুই আসেনি।
এখানেও চিন্তাশীল মানুষদের জন্য বলতে পারি, যোগ-বিয়োগের অগ্রাধিকার আলাদা হবার কারণ নেই। বিয়োগকে ভাবা যায় ঋণাত্মকের যোগ হিসাবে 13-5=13+(-5) । যত জায়গায় -2 আছে, সব জায়গায় +(-2) বসিয়ে ভাবতে পারেন। 13-5+3-2+2=13+(-5)+3+(-2)+2। সবাই এখন যোগ।

-------------------------------------------------------------------
কথা ৩: যোগ-বিয়োগ আর গুণ-ভাগ দুটোই থাকলে? 
-------------------------------------------------------------------

চিন্তা কী? উপরের ১ নম্বর নিয়মটা ভাবুন। যার অগ্রাধিকার বেশ সে আগে। গুণ-ভাগের অগ্রাধিকার বেশি তাই গুণ-ভাগ আগে করবেন। তারপর যোগ-বিয়োগ। বাম থেকে ডানে যাওয়ার নিয়মটা শুধুমাত্র তাদের জন্য সত্যি যেখানে অগ্রাধিকার একই। একটা উদাহরণ দেখা যাক।
12÷2÷3×4-6+5×7

এখানে গুণভাগ-ওয়ালা অংশগুলোকে যেমন (12÷2÷3×4) এবং (5×7) কে আগে আলাদা করে নিন। প্রয়োজনে ব্র্যাকেট দিয়ে নিতে পারেন। সেগুলোর ভিতরে যদি গুণভাগ দুই-ই থাকে তাহলে বাম থেকে ডানে যেতে পারেন।
12÷2÷3×4-6+5×7
= (12÷2÷3×4)-6+(5×7)
= (6÷3×4)-6+35 
= (2×4)-6+35
= 8-6+35

খেয়াল করুন গুণ-ভাগের কাজ শেষ হলে, পড়ে থাকবে যোগ-বিয়োগ। যাদের অগ্রাধিকার একই। সুতরাং বাম থেকে ডানে যেতে পারেন। 
8-6+35
= 2+35
= 37

এটা জানলে আর খুব একটা দ্বিধায় পড়তে হবে না কাউকে।

-------------------------------------------------------------------
কথা ৪: O তে Of নাকি Order
-------------------------------------------------------------------

সত্যি হলো Of বলে কোনো অপারেশন গণিতের কোনো তত্ত্বে নেই। এই উপমহাদেশীয় গণিতের বইগুলোতে ‘এর’ বলে একটা কথা আছে, যেটা আদতে ‘গুণ’ অপারেশন। যেমন (১২ এর ১/ ৩)=১২ x ১/৩ = ৪। এই ‘এর’ এর ইংরেজি ‘of’ ।

‘10 এর ½’ এটা মানে যে 10 × ½, এমন করে বাচ্চাদের শেখানোর চিন্তাটা আসলে খারাপ না। এর দিয়ে গুণ বোঝানো হয় এটা তারা জানল। একইভাবে ‘10 আর 6’ মানে হলো 10+6,  ‘10 থেকে বাদ 6’ এটার মানে হলো 10-6 । তাহলে ‘এর’, ‘আর’, ‘থেকে বাদ’ এগুলো হচ্ছে কথা বলার বা লেখার ভাষা, যেটাকে গণিতে আমরা গুণ, যোগ, বা বিয়োগ অপারেশনগুলো দিয়ে ভাবছি।

আলাদা করে একটা ‘এর’ অপারেশন রাখা অর্থহীন। অনেকে যুক্তি দিতে পারেন ‘এর’ একটা গুণ যেটা সাধারণ গুণের থেকে বেশি ক্ষমতার অধিকারী (অগ্রাধিকার বেশি, আগে হিসেব করতে হবে)। সেটাও ধোপে টিকবে না কারণ আপনি 10 এর ½ না লিখে একটা ব্র্যাকেটসমেত (10× ½ ) লিখলেই সেটা হয়।

আমাদের উপমহাদেশে O তে ‘Of’ যদিও প্রচলিত, বিশ্বের আর সব জায়গায় কিন্তু এমন না। অস্ট্রেলিয়া এবং পশ্চিম আফ্রিকার দেশগুলোতেও BODMAS প্রচলিত। সেখানে তারা O মানে জানে Order বা সূচক। ইংল্যান্ডে এটাকে বলে BIDMAS, সেখানে দ্বিতীয় অক্ষরটা অর্থাৎ ‘I’ এর মানে হলো Indices বা সূচক। কানাডা, নিউজিল্যান্ডে প্রচলিত হলো BEDMAS, যেখানে E এর মানে Exponent বা সূচক, যুক্ররাষ্ট্রে প্রচলিত হলো PEMDAS , সেখানেও E মানে Exponent বা সূচক। অর্থাৎ বাকি সবাই জানে ব্র্যাকেটের পর সূচকের কাজ, অর্থহীন ‘এর’কে কেউই রাখেনি।

আমরা of জানায় সমস্যা যা হয়েছে- O দিয়ে Order-ও বোঝায় সেই ব্যাপারটা অনেকের জানা হয়নি। BODMAS এর এই Order বলছে যে গুণ/ভাগ কিংবা যোগ/বিয়োগের আগে সূচকের কাজ করতে হবে।

যেমন:
2³÷4+3
= 8÷4+3
= 2+3
= 5

-------------------------------------------------------------------
বাম থেকে ডানের ব্যতিক্রম
-------------------------------------------------------------------

উপরে যেহেতু সূচকের ব্যপারটা এসেছে , তাই সে সংক্রান্ত একটা কথা বলে রাখি। আগে বলেছি যে যোগ-বিয়োগ বা গুণ-ভাগের বেলায় একই অগ্রাধিকার-ওয়ালা অপারেশনের ক্ষেত্রে ‘বাম থেকে ডান’ যেতে হবে। এই ব্যাপারটার একটা ছোট্ট ব্যতিক্রম আছে সূচকের ক্ষেত্রে।

যখন পাওয়ারের উপর পাওয়ার থাকে তখন সবার উপরের পাওয়ারটা আগে হিসাব করতে হয়। আমরা যেহেতু পাওয়ারগুলোকে কোনো সংখ্যার উপরে ডানদিকে লিখি তাই এক্ষেত্রে ডান থেকে বাম আসতে হয়। যেমন 2^1^3^2  এটাকে ভাবুন ২ এর মাথায় পাওয়ার ১, সেই ১ এর মাথায় ৩, সেই ৩ এর মাথায় ২। এবারে আগে হিসেব করা হয় 3^2 কে। পুরো হিসেবটা হবে এমন: 2^1^3^2 = 2^1^9 = 2^1 = 2, এখানে বাম থেকে ডানে গেলে চৌষট্টি পেয়ে যাবেন, যেটা ঠিক না। 

-------------------------------------------------------------------
 6÷2(1+2) = ?
-------------------------------------------------------------------

শেষ করা যাক অনলাইন কাঁপানো একটা বিখ্যাত সমস্যা দিয়ে। 6÷2(1+2) = ?
BODMAS এর নিয়ম জানলে এটা করা খুবই সহজ।
6÷2(1+2)
= 6÷2×(1+2)
= 6÷2×3 [আগে ব্র্যাকেটের কাজ]
= 3 × 3 [গুণ-ভাগ একই অগ্রাধিকার, তাই বাম থেকে ডানে]
= 9

আমি প্রায়ই ইনবক্সে প্রশ্ন পাই- কেন Casio-র দুই মডেলের Scientific Calculator এ 6/2(1+2) এর মান দুই রকম দেখায়।

প্রথমে বলে নিই, 2(1+2) এই 2 আর (1+2) এর মাঝে যে গুণটা আছে, সেটা যদি আমরা স্পষ্ট করে বসিয়ে দিই, তাহলে সব ক্যালকুলেটর একই মান দেয়। 6/2×(1+2) এটা লিখলে সবাই উত্তর দেবে 9। কারও তখন কোনো দ্বিধা থাকে না।

যখন 2 আর (1+2) এর ভিতরে গুণ চিহ্নটা স্পষ্ট করে দেয়া থাকে না, তখন Algorithm এ ঝামেলাটা হয়। এটাকে তখন বলে Implicit multiplication। এটার অগ্রাধিকার সাধারণ গুণ-ভাগ থেকে বেশি হবে, এমন একটা ধারণা প্রচলিত আছে। যেমন 1/2a লিখলে অধিকাংশ মানুষই বোঝে 2 আর a একসাথে আছে, এটা 1/ (2a)। এই প্রচলিত চিন্তাটা কিন্তু BODMAS এর নিয়ম মানে না। BODMAS মতে,  1/2a= (1/2) × a =  ½ a ।

Implicit multiplication কে অগ্রাধিকার দিলে উপরের অঙ্কের হিসেবটা দাঁড়ায় এমন: 6÷2(1+2)= 6÷2(3) = 6÷6 = 1। কিন্তু এমন Implicit multiplication এর ক্ষেত্রে অগ্রাধিকার আগে হবে, এমন কোনো নিয়ম কোথাও আসলে নেই। ফলে এটাকে সাধারণ গুণ হিসেবে বিবেচনা করে হিসেব করাই সঙ্গত। তাতে পাবেন, 6÷2(1+2)= 6÷2×3= 3×3=9।

Google, WolframAlpha, Desmos ইত্যাদি নির্ভরযোগ্য সাইটগুলোতে 6/2(1+2)  এভাবে লিখে খোঁজ করুন, উত্তর সবসময় 9-ই পাবেন। আর যদি 6/2*(1+2) এমন গুণ-চিহ্ন সমেত লিখে খোঁজ করেন, তাহলে তো কথাই নেই। সব সাইট, সব ক্যালকুলেটর, MATLAB, Python সব Programming Language উত্তর দেবে 9।

তাই 6/2(1+2) এর সঠিক উত্তর 9 , এটাই জেনে রাখুন।

Post a Comment

1 Comments